Flubendiamide, a novel Ca2+ channel modulator, reveals evidence for functional cooperation between Ca2+ pumps and Ca2+ release.
نویسندگان
چکیده
Flubendiamide, developed by Nihon Nohyaku Co., Ltd. (Tokyo, Japan), is a novel activator of ryanodine-sensitive calcium release channels (ryanodine receptors; RyRs), and is known to stabilize insect RyRs in an open state in a species-specific manner and to desensitize the calcium dependence of channel activity. In this study, using flubendiamide as an experimental tool, we examined an impact of functional modulation of RyR on Ca2+ pump. Strikingly, flubendiamide induced a 4-fold stimulation of the Ca2+ pump activity (EC50=11 nM) of an insect that resequesters Ca2+ to intracellular stores, a greater increase than with the classical RyR modulators ryanodine and caffeine. This prominent stimulation, which implies tight functional coupling of Ca2+ release with Ca2+ pump, resulted in a marginal net increase in the extravesicular calcium concentration despite robust Ca2+ release from the intracellular stores by flubendiamide. Further analysis suggested that luminal Ca2+ is an important mediator for the functional coordination of RyRs and Ca2+ pumps. However, kinetic factors for Ca2+ pumps, including ATP and cytoplasmic Ca2+, failed to affect the Ca2+ pump stimulation by flubendiamide. We therefore conclude that the stimulation of Ca2+ pump by flubendiamide is mediated by the decrease in luminal calcium, which may induce calcium dissociation from the luminal Ca2+ binding site on the Ca2+ pump. This mechanism should play an essential role in precise control of intracellular Ca2+ homeostasis.
منابع مشابه
The effect of stress and glucocorticoids on modulation of pain in mice: Interaction with activation of voltage dependent Ca2+ channel
Previous studies indicated that stress and glucocorticoids have modulatory effects on acute pain. The aim of present study was to determine the interaction between stress and glucocorticoids with activation of voltage dependent Ca2+ channel on modulation of acute pain in mice. Male albino mice (25-30 g) were used for this experiment. Tail flick and hot plate were used for evaluation of analgesi...
متن کاملThe effect of stress and glucocorticoids on modulation of pain in mice: Interaction with activation of voltage dependent Ca2+ channel
Previous studies indicated that stress and glucocorticoids have modulatory effects on acute pain. The aim of present study was to determine the interaction between stress and glucocorticoids with activation of voltage dependent Ca2+ channel on modulation of acute pain in mice. Male albino mice (25-30 g) were used for this experiment. Tail flick and hot plate were used for evaluation of analgesi...
متن کاملDysregulated ryanodine receptors mediate cellular toxicity: restoration of normal phenotype by FKBP12.6.
Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chin...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملClose functional coupling between Ca2+ release-activated Ca2+ channels, arachidonic acid release, and leukotriene C4 secretion.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types, particularly of hemopoietic origin, store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. However, little is known about the downstream consequences o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 69 5 شماره
صفحات -
تاریخ انتشار 2006